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I. The Exciton Hamiltonian

An exciton is formed when an electron is promoted from the valence band of a
material to the conduction band. When this happens in a spherical nanoparticle,
we can imagine the creation of two ‘particles’, and electron and a hole, that are
trapped inside the nanoparticle. This is illustrated in Fig. 1.

As you know, the Hamiltonian is the total energy operator for a system,
so to construct the Hamiltonian for an exciton, we need to identify all the
contributions to the energy of the system. There are four: the kinetic energies
of the electron and hole, the Coulombic potential energy between the negatively
charged electron and the positively charged hole, and the polarization potential
energy that results from having a dipole within the nanocrystal. These four
terms, in the order mentioned above, are:
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. . . where ∇2
e is the Laplacian with respect to the spherical coordinates of the

electron, viz., se, θe, and φe (as shown in Fig. 1); ∇2
h is the Laplacian with

respect to the coordinates of the hole, viz., sh, θh, and φh; se and sh are the
position vectors that locate the electron and hole, respectively; se is the length
of se and sh is the length of sh.

From your physics and math courses, you’ll recall that se − sh is the vector
that points from the hole to the electron, which you can see if you subtract the
vectors using the head-to-tail method:
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Therefore the length of this vector, |se − sh|, is simply the distance between the
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Figure 1. The position vectors for the electron (e) and the hole (h) in
the nanocrystal. The spherical coordinates of the electron are also

shown. Note that the radius of the nanocrystal is R.

hole and the electron. This scalar can be found using a dot product:

|se − sh| =
√

(se − sh) · (se − sh) =
√

(se · se) + (sh · sh)− 2 (se · sh)

=
√
s2

e + s2
h − 2sesh cosα

where α is the angle between the vectors se and sh. (You might also recog-
nize this as the cosine law from trigonometry.) Finally, R is the radius of the
nanoparticle that contains the exciton.

For the mass of the hole, use mh = 0.018me. This value has been chosen to
minimize the error in excitation energy for the size of the nanocrystals you will
make in lab. Other symbols in the Hamiltonian are defined in the lab manual.

II. The Exciton Wave Function

Normally when solving Schrödinger’s equation for a given system, you start
with the appropriate Hamiltonian and then solve for the wave function and the
energy. In this case, we’re going to guess the form of the wave function without
actually solving Schrödinger’s equation, which would be far too difficult given
the above Hamiltonian.

As a first approximation, we can say that the wave function for the ex-
citon is the product of the wave functions for an electron-in-a-sphere and a
hole-in-a-sphere. By doing this, we are assuming that the electron and hole
are independent and do not interact with each other. The Hamiltonian for a
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particle-in-a-sphere is

Ĥ = − ~2

2m∇
2

wherem is the mass of the particle. When this is used to construct Schrödinger’s
equation and solved, one finds that

Ĥψn(r) = Enψn(r)

where

En = n2h2

8mR2

and the normalized wave function is

ψn(r) = 1
r
√

2πR
sin
(nπr
R

)
In the above equations, the possible values of the quantum number n are given
by n = 1, 2, 3, . . . , r is the distance between the particle and the center of the
sphere, and R is the radius of the sphere. Here, we will use the ground (i.e.,
n = 1) state for both the electron and the hole to write the approximate exciton
wave function as

Φex(se, sh) ≈ ψ1(se)ψ1(sh)

=
[

1
se
√

2πR
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R

)] [ 1
sh
√

2πR
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(πsh
R

)]
Note that the wave function is a function of the distances of the electron and
hole from the center of the nanoparticle (i.e., se or sh, as shown at right).

e
se

shh

R

The distance variables in a
nanocrystal with an exciton.

III. The Exciton Energy

To find the energy of the exciton when both the electron and hole are in their
ground particle-in-a-sphere quantum states, we use the familiar formula for a
quantum expectation value:

Eex =
ˆ

Φ∗exĤΦex dτ

Plugging in the above Hamiltonian, this becomes
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Φex dτ

Let us evaluate this expression one term at a time.
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A. The Kinetic Energy of the Electron

Consider the first term:

Eex,1 =
ˆ

Φ∗ex

(
− ~2

2me
∇2

e

)
Φex dτ ≡

ˆ
Φ∗exĤeΦex dτ

=
¨

ψ1(se)ψ1(sh)Ĥeψ1(se)ψ1(sh) dτedτh

where we have noted that the quantity in parenthesis is none other than the
Hamiltonian for an electron-in-a-sphere, Ĥe. This Hamiltonian only depends on
the coordinates of the electron, so everything that depends on the coordinates
of the hole can be pulled out:

Eex,1 =
ˆ
ψ1(sh)ψ1(sh) dτh︸ ︷︷ ︸

1

ˆ
ψ1(se)Ĥeψ1(se) dτe

Now, since the wave function for the hole is normalized, the first integral is
unity; thus, we are left with

Eex,1 =
ˆ
ψ1(se)Ĥeψ1(se) dτe

To solve the remaining integral we can use the Schrödinger equation for an
electron-in-a-sphere, given above: Ĥψ1(se) = E1ψ1(se). Substituting this into
the last equation and writing out the expression for E1, we have

Eex,1 =
ˆ
ψ1(se) h2

8meR2ψ1(se) dτe = h2

8meR2

ˆ
ψ1(se)ψ1(se) dτe = h2

8meR2

. . . where we have used the fact that ψ1 is normalized in the last step.

B. The Kinetic Energy of the Hole

By a very similar argument, you can show that the second term in the exciton
energy is

Eex,2 =
ˆ

Φ∗ex

(
− ~2

2mh
∇2

h

)
Φex dτ = h2

8mhR2

C. The Electrostatic Potential Energy

The third term in the exciton energy is

Eex,3 =
ˆ

Φ∗ex

(
− e2

4πε0εCdSe |se − sh|

)
Φex dτ

= − e2

4πε0εCdSe

ˆ Φ∗exΦex
|se − sh|

dτ

= − e2

4πε0εCdSe

¨ [ψ1(se)ψ1(sh)]2

|se − sh|
dτedτh

In the above, dτe = s2
e sin θe dsedθedφe is the volume element corresponding to

the coordinates of the electron, and dτh = s2
h sin θh dshdθhdφh is the volume
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element corresponding to the coordinates of the hole. So the integral we’re
dealing with, ¨ [ψ1(se)ψ1(sh)]2

|se − sh|
dτedτh

is the quantum average inverse distance between the electron and the hole. If
we write out the full integral, we have

˚˚ 1
|se − sh|

[
1

2πR sesh
sin
(πse
R

)
sin
(πsh
R

)]2

× s2
e sin θedsedθedφe s

2
h sin θhdshdθhdφh

As you might guess, this is a tricky integral to solve, especially since |se − sh|
depends on the angle between the electron and the hole position vectors. How-
ever, we can make a pretty good guess at its value using dimensional analysis.
Notice the units of the integral above are inverse distance. The only quantity
that will remain after the integrations is R, so we should expect the value to be
something on the order of 1/R. Indeed, Kippeny, et al. say the result is 1.8/R.∗
Therefore, the third term in the exciton energy is

Eex,3 =
ˆ

Φ∗ex

(
− e2

4πε0εCdSe |se − sh|

)
Φex dτ = − 1.8e2

4πε0εCdSeR

D. The Polarization Energy

The final term in the exciton energy is the polarization energy:

Eex,4 ≡ Epol =
ˆ

Φ∗ex

(
e2

2

∞∑
k=1

αk
s2k

e + s2k
h

R2k+1

)
Φex dτ

At this point, a simplifying assumption is made; the positions of the electron
and hole are combined such that

s2k
e + s2k

h
2 ≡ r2k

This ‘merging’ of the electron and hole into a single particle a distance r from
the center of the nanoparticle also allows us to use a single particle-in-a-sphere
wave function for Φex:

Φ′ex(r) = 1
r
√

2πR
sin
(πr
R

)
∗Using a simplified version of this integral, I was able to estimate its value to be 1.7/R, so

the result does indeed seem reasonable.
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With these approximations, our integral becomes

Epol =
ˆ

Φ′∗ex
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˚ 1
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R

∞∑
k=1
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R
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r2 sin θ dr dθ dφ

= e2
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0

2πˆ

0
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(πr
R

) ∞∑
k=1

αk

( r
R

)2k
sin θ dr dθ dφ

The integrals over θ and φ are 2 and 2π, respectively, so we have

Epol = 2e2

R2

∞∑
k=1

αk

ˆ R

0
sin2

(πr
R

)( r
R

)2k
dr

This is Eq. (5.3) in the lab manual. Before looking at the solution of this
integral, we can again get a feel for what it will look like using dimensional
analysis: note that the integrand is unitless, so the integral must have units of
distance. After integration, the only variable with units of distance that will
remain is R. In addition, the answer will depend on the value of k, since that is
not integrated out either. It turns out that the above integral can be expressed
in terms of something called the generalized hypergeometric function, 1F2:

Epol = 2e2

R2

∞∑
k=1

αk

{
R

2 + 4k

[
1− 1F2( 1

2 + k; 1
2 ,

3
2 + k;−π2)

]}
The values of the hypergeometric function for the first ten terms in the

above sum have been evaluated for you and are listed in Table 5.1 on p. 50 of
the manual. If you put in the expression for αk and those values, you’ll end up
with the following:

Epol = e2 (ε− 1)
2πεCdSeε0R


0.282673

2 + ε
+ 0.171117

1 + 2 (1 + ε)

+ 0.112337
1 + 3 (1 + ε) + · · ·+ 0.0191615

1 + 10 (1 + ε)


So, given the constants e, ε, εCdSe, ε0, and the measured value of R from your
experiment, you can calculate the polarization energy of the exciton, and from
there the energy of the exciton, Eex. (A spreadsheet will make this relatively
easy.)

Putting all the pieces back together, we have an expression for the energy
of the exciton:

Eex = Eex,1 + Eex,2 + Eex,3 + Eex,4

= h2

8R2

(
1
me

+ 1
mh

)
− 1.8e2

4πε0εCdSeR
+ Epol

This is the result given in the manual. Note that once the constants are known,
the exciton energy is really just a function of the nanocrystal radius, R.
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